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Liouville Transformation and Exactly Solvable
SchroÈ dinger Equations
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The present paper discusses the connection between exactly solvable Schro
È
dinger

equations and the Liouville transformation. This transformation yields a large
class of exactly solvable potentials, including the exactly solvable potentials
introduced by Natanzon. In addition, this class is shown to contain two new
families of exactly solvable potentials.

1. INTRODUCTION

The study of exactly solvable Schro
È
dinger equations dates back to the

very beginnings of quantum mechanics. As examples one can site the har-

monic oscillator, Coulomb, Morse (1929) Po
È
schll±Teller (1933), Eckart

(1930), and Manning±Rosen (1933) potentials. One can argue that in each

of these cases the exact solvability comes about because the Schro
È
dinger

equations in question can be transformed by a gauge transformation and

by a change of variables into either the hypergeometric or the confluent

hypergeometric equation. To be more precise, in each of the above cases

there exists a gauge factor s (z; E ), which depends on the energy parameter

E, and a change of variables z 5 z (r), which does not, such that solutions

to the corresponding Schro
È
dinger equation,

2 c 9(r ; E ) 1 U(r) c (r ; E ) 5 E c (r ; E ) (1)

are of the form

c (r ; E ) 5 exp[ s (z(r); E )] f (z(r); E ) (2)
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where f (z; E ) is either F ( a , b ; g ; z), the Gauss hypergeometric function, or

F ( a ; g ; z), the confluent hypergeometric function, and where the parameters

a , b , g are themselves functions of E. The just mentioned types of special
functions are well understood, and as a consequence one can explicitly calcu-

late the bound state and scattering information for the corresponding poten-

tials. In light of these remarks the following question is of interest.

Problem 1. Given a collection of functions ^ 5 { f (z)}, find all possible

potentials U(r) such that there exist an E-dependent gauge factor s (z; E ) and

an E-independent change of variables z(r) such that the solutions of equation

(1) are of the form shown in (2).

For the cases of hypergeometric and confluent hypergeometric functions,

Problem 1 was solved by Natanzon (1971). The corresponding classes of

exactly solvable potentials have come to be known as Natanzon’ s hypergeo-

metric and confluent hypergeometric potentials, and have been the subject
of some discussion in the literature (Ginocchio, 1984; Cordero and SalamoÂ,

1993; Wu et al., 1989). The purpose of the present paper is to review

Natanzon’ s approach and then to enlarge Natanzon’ s class of exactly solvable

potentials by allowing f to come from a larger class of special functions,

namely the solutions of the following class of differential equations:

A(z) f 9(z) 1 B(z) f 8(z) 1 C f (z) 5 0 (3)

where A(z) is a nonzero real polynomial of degree 2 or less, B(z) is a real
polynomial of degree 1 or less, and C is a real constant.

Prior to Natanzon, Problem 1 was considered by Bose (1964) as well

as other authors (Manning, 1938; Bhattacharjie and Sudarshan, 1964). Bose’ s

paper is noteworthy because it introduced the approach that was followed

by Natanzon in his classification. This approach relies on two techniques: a
certain canonical form for linear, second-order differential operators, and the

Liouville transformation. The Liouville transformation will be described in

Section 2 and the Bose±Natanzon approach in Section 3. The solution of

Problem 1 for the case where ^ is the set of solutions of equation (3) is

given in Section 4. The resulting collection of potentials includes Natanzon’ s

hypergeometric and confluent hypergeometric potentials, as well as two new
classes of exactly solvable potentials. These new potentials will be discussed

in Section 5.

2. THE LIOUVILLE TRANSFORMATION

Consider a linear, second-order differential equation

a(z) f 9(z) 1 b(z) f 8(z) 1 c(z) f (z) 5 0 (4)



Liouville Transformation and Exact Solutions 1737

Dividing through by a(z) and making the gauge transformation

f Ã(z) 5 exp 1 #
z b(t)

2a(t)
dt 2 f (z) (5)

changes the equation into the following self-adjoint, canonical form:

f Ã9(z) 1 I(z) f Ã(z) 5 0 (6)

where the potential term is given by

I 5
1

4a2 (4ac 2 2ab8 1 2ba8 2 b2) (7)

Clearly, I(z) is an invariant of equation (4) with respect to gauge transforma-

tions and multiplication by functions, and this is why equation (6) is being
called a canonical form. Henceforth, I(z) will be called the Bose invariant

of equation (4).

A change of the independent variable, say z 5 z(r), will transform

equation (6) into

[z8(r)] 2 2 f Ä 9(r) 2
z9(r)

[z8(r)]3 f Ä 8(r) 1 I(z(r)) f Ä (r) 5 0

where f Ä (r) 5 f Ã(z(r)). The corresponding canonical equation is

c 9(r) 1 J(r) c (r) 5 0 (8)

where

c (r) 5 [z8(r)] 2 1/2 f Ä (r) (9)

J(r) 5 [z8(r)]2 I(z(r)) 1
1

2
{z, r} (10)

and where the term in curly brackets is the Schwarzian derivative of z with

respect to r, namely

{z, r} 5 F z9(r)

z8(r) G 8
2

1

2 F z9(r)

z8(r) G
2

The above process of going from one self-adjoint equation to another

by means of a change of variables has been named the Liouville transformation

in Olver (1974) and the Liouville±Green transformation in Zwillinger (1992).
The Liouville transformation arises naturally in the context of the WKB

approximation (see Chapter 6 of Olver, 1974) and also underlies the following

classical theorem due to Schwarz (see Hille, 1976, Theorem 10.1.1, or Olver,

1995, Theorem 6.28).
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Theorem 2. The general solution to the Schwarzian equation

{z, r} 5 2J(r)

has the form z(r) 5 c 2(r)/ c 1(r), where c 2(r) and c 1(r) are two linearly

independent, but otherwise arbitrary solutions of equation (8).

In particular, this theorem implies that for every potential J(r), there exists

a change of variables z(r) such that the corresponding Liouville transformation

takes the equation f 9(z) 5 0 to equation (8). Therefore, one can relate any
two equations of the form (8) by a Liouville transformation. It is for this

reason that Problem 1 must be formulated with the condition that z(r) not

depend on the energy parameter. Without this restriction the problem would

be uninteresting; one would get a criterion that would be satisfied by all

possible potentials.

3. THE BOSE± NATANZON APPROACH

The approach in question rests on the following reformulation of Prob-
lem 1.

Problem 1A. Given a collection of functions ^ 5 { f (z)}, find all possible

I1(z) $ 0 and I0(z) such that for some E-dependent gauge factor s (z; E ) the
solutions of

f Ã9(z; E ) 1 [I1(z)E 1 I0(z)] f Ã(z; E ) 5 0 (11)

are of the form

f Ã(z; E ) 5 exp( s (z; E )) f (z; E )

Indeed, suppose that I1 and I0 satisfy the above set of requirements. Let

z(r) be a solution of

z8(r) 5 (I1(z))
2 1/2 (12)

From formula (10) it follows that a Liouville transformation of equation (11)

based on the change of variables z 5 z(r) yields an equation with potential
term E 2 U(r), where

2 U(r) 5
I0(z)

I1(z)
1

2 4I1(z)I 91(z) 1 5 (I 81(z))
2

16(I1(z))
3 (13)

Furthermore , the corresponding eigenfunctions will have the form

c (r ; E ) 5 (I1(z))
1/4 f Ã(z; E )

Therefore U(r) satisfies the criterion imposed by Problem 1. One can also
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reverse the above argument to show that given a U(r) demanded by

Problem 1, one can produce an I1 and an I0 that satisfy the criterion of

Problem 1A. In other words, the two formulations are equivalent.
The Bose invariant for the hypergeometric equation

z(1 2 z) f 9(z) 1 ( g 2 (1 1 a 1 b )) f 8(z) 2 a b f (z) 5 0

is given by

I(z) 5
T(z)

4z2(1 2 z)2

where

T(z) 5 (1 2 ( a 2 b )2)z2 1 (2 g ( a 1 b 2 1) 2 4 a b )z 1 g (2 2 g )

Note that every polynomial T(z) of degree 2 or less can be obtained from

some choice of a , b , g . Therefore, in order to solve Problem 1A one must
determine all possible I1(z) and I0(z) such that for all E there exists a T(z; E )

of degree two or less in z such that

I1(z)E 1 I0(z) 5
T(z; E )

4z2(1 2 z)2

It is clear that this condition is satisfied if and only if T(z; E ) 5 R(z)E 1
S(z), where R(z) and S(z) are polynomials of degree 2 or less, and such that
R(z) $ 0 in the domain of interest. The determining relation for z(r) follows

from (12); it is

z8(r) 5
2z(1 2 z)

! R(z)

Setting R(z) 5 r2z
2 1 r1z 1 r0, calculating {z, r}, and plugging the result

into (10), one obtains the formula for Natanzon’ s hypergeometric potentials:

U 5
2 S(z) 1 1

R(z)

1 1 r1 2 2(r2 1 r1)z

z(1 2 z)
2

5

4

(r 2
1 2 4r2r0)

R(z)
1 r2 2 z2(1 2 z)2

R(z)2 (14)

These potentials describe the solution of Problem 1 for the case where ^ is

the set of hypergeometric functions.
It is well known that one can transform hypergeometric functions into

confluent hypergeometric ones by a certain limit process. Natanzon obtained

his confluent hypergeometric potentials by applying this limit process to his

hypergeometric potentials. The resulting family of potentials can also be
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considered as a solution of Problem 1, but the corresponding ^ is not the set

of confluent hypergeometric functions, but rather the set of scaled confluent

hypergeometric functions; namely f (z) 5 F ( a ; g ; v z), where v is an extra
scaling parameter. These functions satisfy the following scaled version of

the confluent hypergeometric equation:

z f 9(z) 1 ( g 2 v z) f 8(z) 2 v a f (z) 5 0

The corresponding Bose invariant is

I(z) 5
2 v 2z2 1 2 v ( g 2 2 a )z 1 g (2 2 g )

4z2

where again every possible second-degree polynomial can occur in the numer-

ator as one varies a , g , v . Hence, by the same reasoning as above, the

criterion of Problem 1A will be satisfied if and only if

I1(z)E 1 I0(z) 5
R(z)E 1 S(z)

4z2

where R(z) and S(z) are polynomials of degree 2 or less, such that R(z) $ 0 in
the domain of interest. The determining relation for z(r) follows from (12); it is

z8(r) 5
2z

! R(z)

Setting R(z) 5 r2z
2 1 r1z 1 r0, calculating {z, r}, and plugging the result

into (10), one obtains the formula for Natanzon’ s confluent hypergeomet-

ric potentials:

U 5
2 S(z) 1 1

R(z)
1 1 r1

z
2

5

4

r 2
1 2 4r2r0

R(z)
2 r2 2 z2

R(z)2 (15)

4. GENERALIZED NATANZON POTENTIALS

The present section is devoted to the solution of Problem 1 for the case

where ^ is the set of solutions f (z) of equations of type (3). The Bose

invariant for equation (3) is given by

I(z) 5
T(z)

A(z)2

where T(z) is a polynomial of degree 2 or less determined by quadratic

combinations of the coefficients of A(z), B(z), and C. The exact formula for

T(z) is not important; it can be readily recovered from equation (7). What is

significant is that for a fixed A(z), one can obtain every possible T(z) of
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degree 2 or less from some choice of B(z) and C. Consequently, using the

reformulation given by Problem 1A, one must seek all possible I1(z) and

I0(z) such that for all values of E, there exist T(z; E ) and A(z; E ) both of
degree 2 or less, such that

I1(z)E 1 I0(z) 5
T(z; E )

A(z; E )2 (16)

Lemma 3. Suppose that for all E there exist T(z; E ) and A(z; E ) such
that relation (16) holds. Then, there exist E-independent polynomials A(z),
R(z), S(z) of degree two or less such that I1 5 R/A2 and I0 5 S/A2.

Proof. Setting E 5 0 in (16), one infers that I0 5 T0 /A2
0, where the

degrees of T0 and A0 are two or less. Similarly, by setting E 5 1, one infers

that I1 5 T0 /A2
0 2 T1 /A2

1, where the degrees of T1 and A1 are two or less.

Thus, relation (16) may be rewritten as

ET1

A2
1

1
(1 2 E )T0

A2
0

5
ET1 A2

0 1 (1 2 E )T0 A2
1

A2
0 A2

1

5
T(z; E )

A(z; E )2 (17)

Given rational functions P0 /Q0 and P1 /Q1 where the numerators and denomi-

nators are relatively prime polynomials, it is easy to show that the denominator
of the reduced form of

P0

Q0

1 l
P1

Q1

, l P C

is the least common multiple of Q0 and Q1 for all but a finite number of l
values. This observation implies that the least common multiple of A1 and

A0 must have degree less than or equal to 2.

The rest of the proof will be done by cases, based on the degree of A1

and A0. If both A0 and A1 are constants, then there is nothing to prove.

Next, consider the case where one of A0 and A1 is a constant, but the
other one is not. Without loss of generality suppose it is A1 that is constant.

Then T1 must be constant also, for otherwise the linear combinations of

T0 A2
1 and T1 A2

0 would not always yield polynomials of degree 2 or less.

Therefore the lemma is true for this case also.

Suppose next that both A1 and A0 have degree 1. If A1 and A0 have the

same root, then there is nothing to prove. If A1 and A0 have different roots,
then both T1 and T0 must be constants, because otherwise linear combinations

of T0 A2
1 and T1 A2

0 would not always yield polynomials of degree 2 or less.

Hence one can write

I1 5
T1 A2

0

A2
0 A2

1

, I0 5
T0 A2

1

A2
0 A2

1
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and this proves the lemma for the case under consideration.

Finally, suppose that one or both of A1 and A0 is second degree. Without

loss of generality assume that A1 has degree 2. Consequently, A1 must be the
least common multiple of A0 and A1, i.e., A0 must be a factor of A1. Now A0

cannot be a constant, because generically, the degree of linear combinations

of T1 A2
0 and T0 A2

1 would be greater than 2. If the degree of A0 is 2, then

there is nothing to prove. The last possibility is that A1 5 D A0, where both

A0 and D have degree 1. In this case

I1 E 1 I0 5
ET1 1 (1 2 E ) D 2T0

A2
1

and hence T0 must be a constant. But one can therefore write

I0 5
T0 D 2

A2
1

i.e., the lemma is also true for this last case. n

Using the above lemma as well as the formulas (12) and (13), one can

now give the solution of Problem 1 for the case where ^ is the set of solutions

to equation (3). The desired potentials have the form

U(r) 5
2 S(z) 1 $(A)/4

R(z)

1 1 2 3R9(z)

2
2

5

4

$(R)

R(z)
1

R8(z)A8(z)

A(z) 2 A(z)2

4R(z)2 (18)

where A(z), R(z), S(z) are polynomials of degree two or less, $ denotes the

discriminant operator, and z(r) is a solution of

z8(r) 5
A(z)

! R(z)
(19)

Henceforth this class of potentials will be referred to as the generalized

Natanzon potentials.

5. NEW EXACTLY SOLVABLE POTENTIALS

Note that the presentation of the generalized Natanzon potentials given

by equations (18) and (19) is invariant under affine substitutions, z j az 1
b. Consequently, no generality will be lost if one restricts A(z) to one of the

following five possibilities: 1, z, z2, z(z 2 1), z2 1 1. The second and the

fourth cases yield, respectively, the Natanzon confluent hypergeometric and
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the Natanzon hypergeometric potentials. If A(z) 5 z2, then the substitution

z j 1/z transforms (18) and (19) into the corresponding forms for the case

of A(z) 5 z. Therefore, if A(z) 5 z2, one again obtains the Natanzon confluent
hypergeometric potentials. With a bit of work one can check that at the level

of solutions to the respective forms of equation (3), this transformation

corresponds to the to the well-known identity (see Chapter 6.6 of ErdeÂlyi

and Bateman, 1953)

2 F0( a , a 1 1 2 g ; 1/z) 5 z a C ( a , g ; z)

where C is the confluent hypergeometric function of the second kind.

The two remaining cases, A(z) 5 1 and A(z) 5 1 1 z2, yield new families

of exactly solvable potentials. These will be referred to, respectively, as case

1 and case 5 potentials, and will now be examined in in some detail. In each

case it will be convenient to rewrite equation (3) using a certain choice of

adapted parameters. These adapted parameters will be denoted by Greek
letters, and the resulting equation will be referred to as the primary equation.

The solutions of the primary equations can be given in terms of hypergeo-

metric functions, and have a natural dependence on the adapted parameters.

The actual potential depends on a choice of R(z). The potential parametersÐ

these will be denoted using lowercase Latin lettersÐ and the energy parameter

E will turn out to be related to the adapted parameters by polynomial relations.
It is important to note that for fixed potential parameters and a fixed value

of E one must solve these relations in order to obtain the corresponding

values of the adapted parameters of the primary equation.

An examination of formula (18) shows that in order for U(r) to be

nonsingular, the z domain of the function shown in the right-hand side of

(18) must not contain any roots of R(z). Singular potentials will not be
discussed here, and this constraint greatly reduces the possible choices for

R(z).
According to equation (19), the physical coordinate of the corresponding

Natanzon potential is given by

r(z) 5 #
z ! R(t)

A(t)
dt

In all cases one can explicitly calculate the above antiderivative, but the

inverse, i.e., z(r), cannot in general be specified explicitly. Indeed, one may

reasonably speculate that historically the study of Natanzon potentials was
delayed by the fact that the inverse z(r) of the above antiderivative can be

given in terms of elementary functions only for certain restricted choices of

R(z), and A(z) [based on the remarks found in the first paragraph of Natanzon

(1971), it would seem that Natanzon shares this viewpoint].
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Nonetheless, a great deal of information about the inverse is available.

First, one can always take the domain of z(r) to be the whole real line;

this is a consequence of the fact that we excluded those R(z) that have
roots in the domain of z. One can calculate power series and asymptotic

expansions for z(r) and use these as the basis for a numerical approximation.

The graphs of potential curves that are given below were generated using

this approach.

In the subsequent discussion F and C will denote the confluent hyper-

geometric functions of the first and second kind, and F will denote the usual
hypergeometric function 2 F1. For the source of this notation as well as the

various properties of these functions the reader is referred to ErdeÂlyi and

Bateman (1953).

Case 1. A(z) 5 1

Primary Equation: f 9(z) 2 2 v (z 2 b ) f 8(z) 2 4 a v f (z) 5 0

Primary Solutions:

f 0 5 F ( a ; 1/2; v (z 2 b )2), f 1 5 (z 2 b ) F ( a 1 1/2; 3/2; v (z 2 b )2)

Note that the family of potentials under discussion is invariant under substitu-

tions of the form z j z 1 k, k P R . In order to obtain a nonsingular potential,

R(z) must not have real roots, and consequently it is sufficient to consider
the case R(z) 5 z2 1 1. The most general form of the potential can then be

obtained by a scaling transformation.

Distance 1-Form and Physical Variable:

dr 5 ! z2 1 1 dz r 5
1

2
(z ! z2 1 1 1 log(z 1 ! z2 1 1))

z , 6 ! 2 | r | , r ® 6 ` (20)

Potential:

U 5
az 1 b

z2 1 1
2

3/4

(z2 1 1)2 1
5/4

(z2 1 1)3

E 5 2 v 2, a 5 2 2 b v 2, b 5 v 2( b 2 2 1) 2 v (1 2 4 a ) (21)

The resulting two-parameter family of potentials is characterized by the

presence of two wells separated by a barrier (see Fig. 1). The parameter a
controls the degree of asymmetry; if a 5 0, the potential is symmetric about

r 5 0. The parameter b controls the height of the central barrier. As b
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Fig. 1. Case 1: roles of the a and b parameters.

increases, the wells become smaller; if in addition a 5 0, then they

disappear altogether. As b decreases, the two wells merge into one.

Eigenfunctions:

c i 5 e 2 1/2 v (z 2 b )2 (z 2 1 1)1/4 f i , i 5 0, 1 (22)

Bound States. A bound state occurs when 2 2 a P N , and when v .
0. This directly implies that there are infinitely many bound states if a Þ 0

or if b , 0, and that there are no bound states otherwise.

Scattering. The scattering states occur when E . 0. Correspondingly,

v 5 i v Ã, and a 5 1±4 1 i a Ã, where v Ã. 0 and a Ãare real. As a consequence
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c 0 and c 1 are real-valued functions; this follows directly from the well-known

formula (see Chapter 6.3 of ErdeÂlyi and Bateman, 1953)

F (a; c; z) 5 ez F (c 2 a; c; 2 z)

An asymptotically free eigenfunction, call it c f, can be given explicitly in

terms of the confluent hypergeometric function of the second kind:

c f 5 v a e 2 1/2 v (z 2 b )2(z2 1 1)1/4 C ( a ; 1/2; v (z 2 b )2)

From the well-known asymptotic formula (see Chapter 6.13 of ErdeÂlyi and

Bateman, 1953)

C (a; c; z) , z 2 a, z ® 1 `

and from (20) it follows that

c f , exp( 2 i v Ã| r | ) exp F i 1 6 a

v Ã
2 ! 2

! | r | 2
a2

4 v Ã
3 2 G ( ! 2 | r | 7 b )2i a

Ã

as r ® 6 ` . Thus, asymptotically c f represents an almost free particle traveling

toward the center. The discontinuity in the direction of motion is caused by
the fact that F (z) is not regular at z 5 0. The extra terms in the asymptotic

phase appear because of the slow rateÐ on the order of r 2 1 or r 2 1/2, depending

respectively on whether a is zero or notÐ at which the potential falls off

toward zero.

From the relation between confluent hypergeometric functions of the

first and second kinds (see Chapter 6.7 of ErdeÂlyi and Bateman, 1953),
one obtains

c 0 5 c0 c f 1 c0 c f, c 1 5 sgn(z)(c1 c f 1 c1 f f).

where

c0 5 ( 2 v ) 2 a G (1/2)

G (1/4 2 i a Ã)
, c1 5 ( 2 v ) 2 1/2 2 a G (3/2)

G (3/4 2 i a Ã)

It immediately follows that

1

2 1 c 0

c0

2
c 1

c1 2 5 H T c Å f, z ® 1 `
c f 1 R c f, z ® 2 `

where the reflection and transmission coefficients are given by

T 5 e i u (1 2 e 2 2 a p i) 2 1, R 5 e i u (1 2 e 2 a p i) 2 1
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where

e i u 5
G (1/2 2 a )

G ( a )
E ( a 2 1/4) e 2 p i/4

Case 5. A(z) 5 z2 1 1

Primary Equation:

(1 1 z2) f 9(z) 1 (i(1 2 2 r ) 1 (2 s 1 1)z) f 8(z) 1 ( s 2 2 d 2) f 5 0

The above equation is related to the usual hypergeometric equation,

z (1 2 z ) f z z 1 ( g 2 z ( a 1 b 1 1)) f z 2 a b f 5 0

by a linear change of parameters, and a complex-linear change of coordinates:

s 5
a 1 b

2
, d 5

a 2 b
2

, r 5 g 2
a 1 b

2
, z 5

1 2 iz

2

Primary Solutions:

f 1 5 F( s 1 d , s 2 d ; r 1 s ; (1 2 iz)/2)

f 2 5 F( s 1 d , s 2 d ; 1 2 r 1 s ; (1 1 iz)/2)

To obtain nonsingular potentials one must take R(z) without any real roots.
The resulting family of potentials depends of four parameters. A treatment

of the most general potential, i.e., one depending all four parameters, would

be unduly long, and not particularly illuminating. Thus, the focus here will

on a more manageable three-parameter subclass, namely the potentials that

correspond to R(z) 5 z2 1 a2.

Distance 1-Form and Physical Variable:

dr 5
! z2 1 a2

z2 1 1
dz,

r 5 sinh 2 1 1 z

a 2 1 ! 1 2 a2 tanh 2 1 1 ! 1 2 a2z

! z2 1 a2 2
z , a exp( ! 1 2 a2 tanh 2 1( ! 1 2 a2)) sinh(r), r ® 6 `

Potential:

U 5
b 1 cz

a 2 1 z 2 1
1

4

z 2 1 1

z 2 1 a 2 1 1 z 2 1 1

z 2 1 a 2 2
2

1 2 1

4
2

1

2

a 2 1 1

z 2 1 1
1

5

4

a 2

z 2 1 a 2 2 (23)
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E 5 2 d 2, b 5 d 2(1 2 a2) 2 1 r 2
1

2 2
2

2 1 s 2
1

2 2
2

c 5 2 2i 1 r 2
1

2 2 1 s 2
1

2 2 (24)

These potentials fall off exponentially toward zero for large r. Setting

r 5 1/2, one obtains potentials that coincide with a certain subclass of
Natanzon hypergeometric potentials. The correspondence is given by the

following substitution: z j 1 1 z2, and at the level of solutions to the

respective primary equations is described by the following quadratic

transformation of the hypergeometric function (see Chapter 2.11 of ErdeÂlyi

and Bateman, 1953):

F( s 1 d , s 2 d ; 1/2 1 s ; (1 2 iz)/2)

5 F(( s 1 d )/2, ( s 2 d )/2; 1/2 1 s ; 1 1 z 2)

The generic shape is that of two spikes for a . 1, and two wells

for 0 , a , 1; when a 5 1 one recovers a modified Po
È
schll±Teller

potential. The parameter b controls the height/depth of the central spike/

well, while c is the skew parameter that controls the degree of asymmetry

in the potential.

The case a . 1 results in the more interesting potential shapes, and

thus will be the focus of the remaining discussion. Consider the symmetric
potentials (c 5 0) for a fixed value of a . 1. The number of extrema in the

potential curve depends on the value of b. There are three critical values of

b where the number of extrema changes:

7a2 2 3 1 3a 2 2

20
,

2 a2 1 9 2 9a 2 2

4
, 2 a2 1

3

4

At these critical values of b some of the extrema merge, and one obtains

some distinguished potential shapes; these shapes are shown in Fig. 2a.

At the value b 5 ( 2 a2 1 9 2 9a 2 2)/4 the potential takes the form

a2 2 1

4a4 1 z
4((a2 2 7)z2 1 6a4 2 12a2)

(z2 1 a2)3 2 (a2 2 7) 2
One can show that z 5 r/a 1 O(r 3) near r 5 0, and hence the first three r-
derivatives of the potential vanish. As a consequence, one obtains a well
with a very flat bottom. The potential also possesses two local maxima; these

correspond to spikelike barriers on either side of the well. The variation of

a in this type of potential shape is shown in Fig. 2b. The two barriers vanish

precisely at the critical value of b 5 2 a2 1 3/4.
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Fig. 2. Case 5 symmetric potentials: (a) critical values of the b parameter, (b) variation of

the a parameter in potentials with the middle critical b value.

For c Þ 0 one can obtain similarly distinguished potentials whenever
b attains a critical value where the potential extrema merge. There is no exact

formula for these critical values of b; they must be solved for numerically.

The resulting asymmetric potentials and their symmetric counterparts are

shown in Fig. 3.

Eigenfunctions:

c i 5 (1 2 iz) s /2 1 r /2 2 1/4 (1 1 iz) s /2 2 r /2 1 1/4 1 a
2 1 z2

1 1 z2 2
1/4

f i , i 5 1, 2 (25)

Bound States: An examination of relations (24) will show that in

order to obtain a potential with real coefficients, d must either be real



1750 Milson

Fig. 3. Case 5 asymmetric potentials: variation of the c parameter in potentials with (a) lowest

critical b value, (b) middle critical b value.

or imaginary; and either s 2 1/2 or r 2 1/2 must be real, while the

other must be imaginary.

Note that the following transformation of the parameters is a symmetry
of the potential:

r j i ( s 2 1/2) 1 1/2, s j 2 i ( r 2 1/2) 1 1/2

The transformation d ® 2 d is also a potential symmetry. The presence of
these two symmetries means that without loss of generality one can assume

that s is real, that R( r ) 5 1/2, and that d is either positive or positive

imaginary. With these assumption in place, c 2 is the complex conjugate of

c 1, and the latter is square integrable if and only if d . 0 and s 1 d P 2 N .
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After a bit of calculation one can show that this criterion implies that

for fixed a, b, c, the bound states are indexed by natural numbers N 5
2 ( s 1 d ) such that

N ,
! 2 2b 1 2 ! b2 1 c2 2 1

2

In particular, if c 5 0 (the symmetric potentials) then there will be no bound
states if b $ 2 1/4. If b , 2 1/4, then the number of bound states is equal to

the largest integer smaller than 1/2 1 ! 2 b.

Scattering. The scattering states occur when E . 0, and hence without loss

of generality d is positive imaginary. For reasons detailed above, s will be

assumed to be real, while R( r ) will be assumed to be 1/2. To compute the
reflection and transmission coefficients it will be useful to introduce two more

solutions of the primary equation:

f 3 5 ((iz 2 1)/2) 2 s 2 d F( s 1 d , d 1 1 2 r ; 1 1 2 d ; 2/(1 2 iz))

f 4 5 ((iz 2 1)/2) 2 s 2 d F( s 2 d , r 2 d ; 1 2 2 d ; 2/(1 1 iz))

As per the formula in (25), let c 3 and c 4 denote the corresponding eigenfunctions.

The usefulness of c 3 and c 4 is that they represent asymptotically free particles

traveling, respectively, toward and away from the origin:

c 3 , K 2 d e 7 ( s 1 r 1 d 2 1/2) p i/2 e 2 d | r| , r ® 6 `

c 4 , K d e 7 ( s 1 r 2 d 2 1/2) p i/2 e d | r| , r ® 6 `

where

K 5
a

4
exp ( ! 1 2 a 2 tanh 2 1 ( ! 1 2 a 2))

Relations between the regular eigenfunctions c 1, c 2 and the irregular ones c 3,

c 4 are given by (see Chapter 2.9 of ErdeÂlji and Bateman, 1953)

c 1 5 c3 c 3 1 c4 c 4, c 2 5 c4e
6 p i(s 1 d ) c 3 1 c3e

6 p i( s 2 d ) c 4

where the 6 in the second equation corresponds to the sign of z, and where

c3 5
G ( s 1 r ) G (2 d )

G ( r 1 d ) G ( s 1 d )
, c4 5

G ( s 1 r ) G ( 2 2d )

G ( r 2 d ) G ( s 2 d )
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It follows that

K d e 2 ( s 1 d 1 r 2 1/2) p i/2 1 c 1

c3

e p i( s 1 d ) 2
c 2

c4 2
5 H Te d r, r ® 1 `

e d r 1 Re2 d r, r ® 2 `

where elementary calculations show that

T 5
K 2d G ( s 2 d ) G (1 2 s 2 d ) G ( r 2 d ) G (1 2 r 2 d )

2 p G ( 2 2 d ) G (1 2 2d )

R 5 T 1 sin( p s ) sin( p r )

sin( p d )
2

i cos( p s ) cos( p r )

cos( p d ) 2
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